Operating System

OPERATING SYSTEM
Assignment

Direct Memory Access & Interrupt Request
Submitted To:

Mr. Tariq Malik
[image: image1.png]

Submitted By:

Omer Farooq

Roll No. 040

BS (CS) – Section B

IV th Semester

Session 2004-2008
[image: image55.png]COUNAGF 7o KO

Government College University, Lahore

Direct Memory Access (DMA)
What is DMA?
· A means of handling data transfer between memory and a peripheral device that bypasses the central processing unit.
[iarch]
· A technique for transferring data from main memory to a device without passing it through the CPU.

[x-emi]
· DMA is a method of transferring data from one memory area to another without having to go through the central processing unit.

[xilinx]
· DMA channels allow hardware devices to access the main memory without involving the CPU. This frees up CPU resources for other tasks.

[usbm]
· A method by which data can be transferred to/from computer memory from/to a device or memory on the bus while the processor do another process.

[ueida]
· Direct Memory Access (DMA) is a method of allowing data to be moved from one location to another in a computer without intervention from the central processor (CPU).

[frebsd]
· Direct memory access (DMA) is a means of having a peripheral device control a processor's memory bus directly. DMA permits the peripheral to transfer data directly to or from memory without interrupting the functions performed by the processor.

[embe]
Why DMA?
In computer-based data acquisition applications, data incoming or outgoing through computer I/O devices must often be managed at high speeds or in large quantities. The three primary data transfer mechanisms for computer-based data acquisition are polling, interrupts (also known as programmed I/O), and direct memory access (DMA). Polling is a form of foreground data acquisition in which the processor is dedicated to acquiring the incoming data, often by waiting in a loop. The main program calls an acquisition subroutine that waits until the processor collects the required data. With interrupts, the processor is periodically interrupted from executing the main program to store incoming data in a buffer for later retrieval and processing. Interrupts are a form of background acquisition because the main program contains no code that reads data from the input device. Instead, the processor is invisibly stolen periodically from the main program to perform this function. With DMA, a dedicated data transfer device reads incoming data from a device and stores that data in a system memory buffer for later retrieval by the processor. This DMA process occurs transparently from the processor's point of view. DMA has several advantages over polling and interrupts. DMA is fast because a dedicated piece of hardware transfers data from one computer location to another and only one or two bus read/write cycles are required per piece of data transferred. In addition, DMA is usually required to achieve maximum data transfer speed, and thus is useful for high speed data acquisition devices. DMA also minimizes latency in servicing a data acquisition device because the dedicated hardware responds more quickly than interrupts, and transfer time is short. Minimizing latency reduces the amount of temporary storage (memory) required on an I/O device. DMA also off-loads the processor, which means the processor does not have to execute any instructions to transfer data. Therefore, the processor is not used for handling the data transfer activity and is available for other processing activity. Also, in systems where the processor primarily operates out of its cache, data transfer is actually occurring in parallel, thus increasing overall system utilization.
[cires]
Working of DMA?

DMA has been a built-in feature of PC architecture since the introduction of the original IBM PC. PC-based DMA was used for floppy disk I/O in the original PC and for hard disk I/O in later versions. PC-based DMA technology, along with high-speed bus technology, is driven by data storage, communications, and graphics needs–all of which require the highest rates of data transfer between system memory and I/O devices. Data acquisition applications have the same needs and therefore can take advantage of the technology developed for larger technologies.
A DMA controller is a device, usually peripheral to a computer's CPU that is programmed to perform a sequence of data transfers on behalf of the CPU. A DMA controller can directly access memory and is used to transfer data from one memory location to another, or from an I/O device to memory and vice versa. A DMA controller manages several DMA channels, each of which can be programmed to perform a sequence of these DMA transfers. Devices, usually I/O peripherals, that acquire data that must be read (or devices that must output data and be written to) signal the DMA controller to perform a DMA transfer by asserting a hardware DMA request signal. A DMA request signal for each channel is routed to the DMA controller. This signal is monitored and responded to in much the same way that a processor handles interrupts. When the DMA controller sees a DMA request, the DMA controller responds by performing one or many data transfers from that I/O device into system memory or vice versa. Channels must be enabled by the processor for the DMA controller to respond to DMA requests. The number of transfers performed, transfer modes used, and memory locations accessed depends on how the DMA channel is programmed. A DMA controller typically shares the system memory and I/O bus with the CPU and has both bus master and slave capability. Figure 1 shows the DMA controller architecture and how the DMA controller interacts with the CPU. In bus master mode, the DMA controller acquires the system bus (address, data, and control lines) from the CPU to perform the DMA transfers. Because the CPU releases the system bus for the duration of the transfer, the process is sometimes referred to as cycle stealing. However, this term is no longer appropriate in the context of the new high-performance architectures that are appearing in personal computers. These architectures use cache memory for the CPU, which enables the DMA controller to operate in parallel with the CPU to some extent.
[cires]
[image: image56.png]

Figure 1: A DMA controller shares the processor's memory bus
In another words, in a typical DMA transfer, some event (such as an incoming data-available signal from a UART) notifies a separate device called the DMA controller that data needs to be transferred to memory. The DMA controller then asserts a DMA request signal to the CPU, asking its permission to use the bus. The CPU completes its current bus activity, stops driving the bus, and returns a DMA acknowledge signal to the DMA controller. The DMA controller then reads and writes one or more memory bytes, driving the address, data, and control signals as if it were itself the CPU. (The CPU's address, data, and control outputs are restated while the DMA controller has control of the bus.) When the transfer is complete, the DMA controller stops driving the bus and reasserts the DMA request signal. The CPU can then remove its DMA acknowledge signal and resume control of the bus.

Each DMA cycle will typically result in at least two bus cycles: either a peripheral read followed by a memory write or a memory read followed by a peripheral write, depending on the transfer base addresses. The DMA controller itself does no processing on this data. It just transfers the bytes as instructed in its configuration registers.
[embe]
There are two disadvantages for not using DMA for transferring data from DMA controller to memory. They are:
· The controller can cause the processor to halt if it attempts to access data in the same bank of memory into which the controller is writing. This is the fatest option for the I/O device, but may cause the processor to run more slowly because the processor may have to wait until a full block of data is transferred. There are two disadvantages for not using DMA for transferring data from DMA controller to memory.
· The controller can access memory in memory cycles which are not used by the particular bank of memory into which the DMA controller is writing data. This approach, called ``cycle stealing,'' is perhaps the most commonly used approach. (In a processor with a cache that has a high hit rate this approach may not slow the I/O transfer significantly).

[meun]
Steps in DMA transfer
Following figures illustrates the steps involved in DMA in transferring the data from one location in another location inside a computer [image: image2.png]CPU

Cach
DMA/BUS/ ‘
Taterrupt CPU memory bus Buffer
controller e R
PCTRITS
IDE Disk
Controller

Figure 2: Steps in DMA transfer
1) Device driver is told to transfer disk data to buffer at address X.

2) Device driver tells dist controller to transfer the particular bytes, say C from disk to buffer at address X.

3) Disk controller initiates DMA transfer.

4) Disk controller sends each byte to DMA controller.

5) DMA controller transfers bytes to buffer X, increasing memory address and decreasing C, until C gets equal to 0
6) When C gets equal to 0, DMA interrupts CPU to signal transfer completion.

[SG05a]
DMA Transfer Types and Modes

DMA controllers vary as to the type of DMA transfers and the number of DMA channels they support. The two types of DMA transfers are flyby DMA transfers and fetch-and-deposit DMA transfers. The three common transfer modes are single, block, and demand transfer modes.
Flyby DMA Transfers
The fastest DMA transfer type is referred to as a single-cycle, single-address, or flyby transfer. In a flyby DMA transfer, a single bus operation is used to accomplish the transfer, with data read from the source and written to the destination simultaneously. In flyby operation, the device requesting service asserts a DMA request on the appropriate channel request line of the DMA controller. The DMA controller responds by gaining control of the system bus from the CPU and then issuing the pre-programmed memory address. Simultaneously, the DMA controller sends a DMA acknowledge signal to the requesting device. This signal alerts the requesting device to drive the data onto the system data bus or to latch the data from the system bus, depending on the direction of the transfer.
 [image: image3.png]DMA Request \ DMA request remains
(VO Device) high for additional
DMA Acknowledge® transfers.
(DMA Controller)

Memory Write*
(DMA Controller) _/
Address Memory Address
(DMA Controller)
T/O Device Daa

Figure 3: Flyby DMA Transfer
In other words, a flyby DMA transfer looks like a memory read or write cycle with the DMA controller supplying the address and the I/O device reading or writing the data. Because flyby DMA transfers involve a single memory cycle per data transfer, these transfers are very efficient; however, memory to memory transfers are not possible in this mode.

Fetch-and-Deposit DMA transfers
The second type of DMA transfer is referred to as a dual-cycle, dual-address, flow-through, or fetch-and-deposit DMA transfer. As these names imply, this type of transfer involves two memory or I/O cycles. The data being transferred is first read from the I/O device or memory into a temporary data register internal to the DMA controller. The data is then written to the memory or I/O device in the next cycle.
[image: image4.png]DMA Request / \
10 Device

10 Read* 4\—/—
(Dna [Memory Wrie®

Controller]

Address T/O Address Memory Address

Data Data Data

Figure 4: Fetch-and-Deposit DMA transfers

Figure shows the fetch-and- deposit DMA transfer signal protocol. Although inefficient because the DMA controller performs two cycles and thus retains the system bus longer, this type of transfer is useful for interfacing devices with different data bus sizes. For example, a DMA controller can perform two 16-bit read operations from one location followed by a 32-bit write operation to another location. A DMA controller supporting this type of transfer has two address registers per channel (source address and destination address) and bus-size registers, in addition to the usual transfer count and control registers. Unlike the flyby operation, this type of DMA transfer is suitable for both memory-to-memory and I/O transfers.
Other Common DMA transfers Modes

In addition to DMA transfer types, DMA controllers have one or more DMA transfer modes. Single, block, and demand are the most common transfer modes. Single transfer mode transfers one data value for each DMA request assertion. This mode is the slowest method of transfer because it requires the DMA controller to arbitrate for the system bus with each transfer. This arbitration is not a major problem on a lightly loaded bus, but it can lead to latency problems when multiple devices are using the bus. Block and demand transfer modes increase system throughput by allowing the DMA controller to perform multiple DMA transfers when the DMA controller has gained the bus. For block mode transfers, the DMA controller performs the entire DMA sequence as specified by the transfer count register at the fastest possible rate in response to a single DMA request from the I/O device. For demand mode transfers, the DMA controller performs DMA transfers at the fastest possible rate as long as the I/O device asserts its DMA request. When the I/O device unsets this DMA request, transfers are held off.
[cires]
[image: image5.png]=) e HEE

Fle Action Vew Hep

2 Standard floppy disk cantroler
W Inputfoutput (10)

W Interupt request (IRQ)

W Memory

Figure 5: DMA Channel
Adding new hardware on DMA Channel

Microsoft Windows includes a Bus Mastering feature known as Direct Memory Access or DMA. When this DMA feature is enabled, it basically allows your I/O devices to transfer their information directly to/from memory without passing through the Microprocessor. In short, when I/O devices use Direct Memory Access to access their information, this reduces the load placed upon your CPU and your system works faster. Essentially, Direct Memory Access (DMA) is the theoretical data access rate of a Drive measured in megabytes per second. For instance, an Ultra DMA-100 Hard Drive will theoretical access data at a rate of 100 megabytes per second and an Ultra DMA-133 Drive will theoretical access data at a rate of 133 megabytes per second.
To add a new hardware on DMA channel for WINDOWS XP, follow the given rules.

· Right Click on the My Computer icon to open the system properties.
· Now click on the Hardware tab located at the top of the screen, then click on device manager tab
· Now click on the plus sign [+] at IDE ATA/ATAPI controllers to expand that section. In this section, right click on Primary IDE Channel and go to properties.
· Then click on the Advanced Settings Tab at the top of the screen.

· Now for Device 0, ensure that the Transfer Mode: selection is set to DMA if available.

· Then for Device 1, ensure that the Transfer Mode: selection is also set to DMA if available.

· Then click on the OK button at the bottom of the screen to save your settings.

· Then double click on the Secondary IDE Channel to display the Secondary IDE Properties window.

· Then click on the Advanced Settings Tab at the top of the screen.

· Now for Device 0, ensure that the Transfer Mode: selection is set to DMA if available.

· Then for Device 1, ensure that the Transfer Mode: selection is also set to DMA if available.

· Then click on the OK button at the bottom of the screen to save your settings.

· Then close Device Manager and the Control Panel to return back to your Windows session.
[image: image6.png]Genersl | Advanced Setlings | Diiver | Detais | Resources

Device 0
Device Type:

Transter Mode: | DMA I avaiable

Curent Transter Mode: ~[Liva DMA Mode 2

Device 1

Device Type:
Transter Mode: | DMA i avaiable V]

Curent Transter Mode: ~[Liva DMA Mode 2

Figure 6: Adding new hardware on DMA Channel
Interrupt Request (IRQ)
What is an Interrupt?
· An interrupt is an unexpected hardware initiated subroutine call or jump that temporarily suspends the running of the current program.
[elecr]
· A signal from a hardware device to the processor to stop a particular task

[audit]

· The hardware mechanism that enables a device to notify the CPU is called an interrupt.

[SG05a]
IRQ Mechanism

Interrupt Request (IRQ) is a request from a hardware/software to the processor in form of discrete signal to perform a specific task. Since a CPU can get several of these interrupt requests at once from various devices along the same path (e.g., the serial port or the PCI bus), it needs a way to distinguish between them. To do so, the computer assigns an Interrupt Request number (the IRQ number) to each device and its path to the CPU. The Interrupt Request made through the device's IRQ number signals the CPU that the device has a request that needs processing. (A hardware device that needs attention from the CPU is often referred to as "needing servicing".) IRQ numbers are assigned during the boot process to each hardware device that needs one. The following lost indicates some of the typical IRQ assignments for a computer system

	IRQ #
	Device

	0
	System timer

	1
	Keyboard

	2
	Cascade from IRQ 9

	3
	COM port 2 or 4

	4
	COM port 1 or 3

	5
	Parallel (printer) port 2 or sound cards

	6
	Floppy drive controller

	7
	Parallel (printer) port 1

	8
	Real time clock

	9
	Video

	10
	Open

	11
	Open

	12
	PS/2 mouse

	13
	Coprocessor

	14
	Primary IDE controller (hard drives)

	15
	Secondary IDE controller (hard drives)

Table 1: IRQ assignment for Computer System [kbiu]
The CPU hardware has a wire called the interrupt-request line that the CPU senses after executing every instruction. When the CPU detects that a controller has asserted a signal on the interrupt-request line, the CPU performs a state save and jumps to the interrupt-handler routine at a fixed address in memory. The interrupt-handler determines the cause of interrupt, perform the necessary processing, perform a state restore and execute a return from the interrupt instruction to return the CPU to execute state prior to the interrupt.

[image: image7.png]CPU
1

Device driver initiates /O

CPU executing checks for
interrupts between instructions

Initiates 110

v

CPU receiving interrupts

[

transfer controlto fe—2]
interrupt handler

1s

Input ready, output
complete, or error
generates interrupt signal

Interrupt handler process
data, returns from
interrupt

16

CPU resumes processing
of interrupted task

Figure 7: Interrupt-Driven I/O Cycle
In another words the device controller raises an interrupt by asserting a signal on the interrupt-request line, the CPU catches the interrupt and dispatches it to the interrupt handler and the handler clear the interrupt by servicing the device.

[SG05b]
The Interrupt Vector Table
The interrupt table is a list of addresses which contain the information about which routine gets executed when that interrupt has been recognized, and is officially known as the Interrupt Vector Table. There is a special set of signal lines to the CPU which signal when an interrupt has been requested. The CPU checks the code and type, determines whether it should honor the interrupt immediately (or wait for a more convenient time), and then locates the address of the routine to be executed if it determines that the interrupt should be taken. The address is basically the interrupt number multiplied by 4. This is because each address is 4-bytes long, and the vector table begins at address '0'. The table is 256 entries long, or 1024 bytes (0400 in hex).When the system is first initialized, the Interrupt Vector Table is initialized. Many of these routines are pre-defined by the architecture of the machine, but a few are reserved, and therefore can be used by hardware and software manufacturers. These 'user defined' interrupts are loaded immediately after the nucleus or kernel is loaded, and before any application level programs are loaded. For this reason, any device or software requiring an interrupt cannot be made active without rebooting the machine and initializing its interrupt address.[image: image8.png]Interrupt Vector Table

080H

040H
03CH
038H
034H
030H
02CH
028H
024H
020H
01CH
018H
014H
010H
00CH
008H
004H
000H

T

32255 User defined

14.3] Reserved

%

Coprocessor_error

Unassigned

Page fault

General _protection

Stack seg overrun

Segment not present
Invalid task state seg
Coproc_seg_overrun

16
15
14
13
12
11
10

The interrupt vector table is located in
the first 1024 bytes of memory at
addresses 000000H through 0003FFH.

There arc 256 4-byte entries (segment
and offset in real mode).

Double fault

Coprocessor_not_avail

Undefined _Opcode

Bound

Overflow (INTO)

Lhyte breakpoint

NMI_pin

Single-step

Divide error

SRR GEGG 180

Seg_high

Seg low]

[offset_hig Offset low]

Byte 3

Byte 2

Bytel Bytc 0

Figure 8: Interrupt Vector Table

[real]
Types of Interrupts

In general, there are hardware interrupts and software interrupts. A hardware interrupt occurs, for example, when an I/O operation is completed such as reading some data into the computer from a tape drive. A software interrupt occurs when an application program terminates or requests certain services from the operating system. In a personal computer, a hardware interrupt request (IRQ) has a value associated with it that associates it with a particular device. Interrupts can be broadly divided into the following.

Events occurring on peripherals devices

A processor having initiated a control on a peripheral device on behalf of one process may start some other process. When the transfer terminates, the peripheral device will cause an interrupt.

Voluntary events within processes

A process wishing to use the services of operating system may use a specific type of interrupt, a supervisor call (SVC) as a means of notifying the supervisor.

Involuntary events within the processes

A process that attempts an undefined or prohibited action will cause an interrupts that will notify the supervisor.

Action by operators

An operation wishing to communicate with the supervisor may cause an interrupt.

Software Interrupts (Traps)

The basic input/output system (BIOS) communicates directly with the hardware of the computer. It consists of set of programs, which interface with device such as keyboards, display, printer, serial port, Without BIOS the computer system will simply of bundle of wires and electronic device. There are two parts of BIOS the first part is permanently stored in non volatile memory called read only memory (ROM). This parts starts the computer bootstrap. The second is loaded when the operating system is started.

An operating system allows the user to access the hardware in an easy to use manner. It accepts command from the keyboard and displays them to the monitor. The Disk operating system gained its name by from its original purpose of providing a controller for the computer to access its disk drive. The language of DOS consists of a set of command, which are entered directly by user and interpreted to perform file management task.

Hardware Interrupts

Computer systems either use poling or interrupt driven software to service external equipment. With poling the system continually monitors a status line and wait for it to become archive. An interrupt driven device sends an interrupt request to the computer, which is then serviced by Internet service routine (ISR).

[winnt]
Interrupt Priority

The interrupt priority level (IPL) is a part of the current system interrupt state, which indicates the interrupt requests that will currently be accepted. The IPL may be indicated in hardware by the registers in a programmable Interrupt controller. The priority decreases from pin-0 to pin-7, with the timer chip using pin-0 and the parallel port using pin-7.

An integer based IPL may be as small as a single bit, with just two values: 0 (all interrupts enabled) or 1 (all interrupts disabled). However, some architectures permit a greater range of values, where each value enables interrupt requests that specify a higher level, while blocking ones from the same or lower level.

Assigning different priorities to interrupt requests can be useful in trying to balance system throughput versus interrupt latency. Some kinds of interrupts need to be responded to more quickly than others, but the amount of processing might not be large, so it makes sense to assign a higher priority to that kind of interrupt.Some important IPL values are given below
	Priority Level Range
	Description

	Level 31
	For the "power-fail" interrupt

	Level 24
	For the clock interrupt.

	Levels 20 to 23
	Used for I/O devices

	Levels 8-11
	Used for fork interrupts. When a driver received a device interrupt (priority 20-23), it is supposed to do as little processing as possible at such a high priority; instead, if any time-consuming operations needed to be done, these were to be deferred by requesting a software interrupt in the 8-11 range. When this interrupt is triggered, the further processing would resume.

	Level 7
	Used to synchronize access to the process scheduler data structures.

	Level 4
	Used for I/O post-processing tasks i.e. final completion of a request including returning results to the application process.

	Level 3
	Used for the process rescheduling interrupt. Any code executing at higher interrupt levels is not allowed to assume that there is a current process context (since a process reschedule might be in progress). In particular, page faults is not allowed at this or higher levels.

	Level 2
	Used to synchronize access to per-process data structures. Any time the kernel needed access to a process context, it sent that process a special kernel AST which executed in the process context at IPL.

	Level 0
	The normal level for execution of non-interrupt code, including ordinary application code.

The IPL value of a device is defined when the driver is installed. The driver's DSP files can define the IPL for devices on an ISA bus; for most other bus types, the IPL is auto configured by reading the IPL value directly from the board.

[wiki]
Hardware Conflicts - General Notes

Hardware conflicts are one of the most common problems encountered when adding a new hardware to your computer. Hardware conflicts can occur when the more than one devices in your computer share the same interrupt request (IRQ), I/O address, or memory address setting.
Avoiding Hardware Conflicts

Many devices require unique resource settings. The number of IRQ and I/O addresses available is limited. The best way to avoid a hardware conflict is to know the I/O address, IRQ, and memory address used by each device in your computer before adding a new board. It is a good idea to keep a written record of the resource assignments for the devices in your computer. If you don't have a written record of the resources currently being used by your system, you can find out this information by.
· Examining the I/O address, IRQ, or memory settings for the card (either physically or via a setup utility program.
· Reading the product's Reference Manual or Installation Guide.
· Contacting the manufacturer of the board and asking for the valid resource settings of the hardware you want to install.
Symptoms of an IRQ Conflict

Some of the common symptoms of an IRQ conflict are.
· The computer hangs or locks up.

· Windows won't open.

· Fatal exception errors rises often

· The video preview window in the capture program is black.

· Frames are dropped during video capture or playback

· Video capture or playback is slow.

· The display or data file is corrupt.

· Audio is not captured or played back.

[intel]
[image: image9.jpg]eviceWanazer; [E]

Fle Acion Vew Hep

1+ W Drect memary access (DMA)
0 W Iputfoutput (10)
8 Interupt request (IRQ)
J (158) 0 Systemtimer
5 (15%) 1 Standard 101]102-Key or Microscft Natural P2 Keyboard
7 (158) 4 Communications Port (COM1)
B058) 6 standard Floppy disk controler
T (158) 8 System CMOSjreal time clock
) (158) 9 Microsoft ACPI-Compliant System
) (sA) 12 Microsoft PS/2 Mouse.
3 (158) 13 Numeric data processor
2 1SA) 14 Prinary IDE Channel
3 158) 15 Secondary IDE Channel
D (PCD) 3 Creative AudopCl (E51371,E51373) (WOM)
(PC) 5 Intei(R) B2801BATBAM USB Liversal Host Controlr - 2442
(PCD) 3 Intei(R) B2801BATBAM USB Liversa Host Controlr - 2444
' (PCD10. Intel(R) 82501BA/BAM SWEUs Controller - 2443
 (PCD 11 NVIDIA GeForced M 440 (Mirosoft Corporation)
5 8 Memory

Figure 9: IRQ Channel

References
1)
[iarch]
-
www.iarchive.com/_library/terminology/d.htm
2)
[x-emi]-
www.x-emi.com/tech_terms.html
3)
[xilinx]
-
www.xilinx.com/publications/glossary.htm
4)
[usbm]-
www.usbman.com/glossarycomputerterms.htm
5)
[ueida]-
www.ueidaq.com/support/glossary/D/
6)
[frebsd]-
http://www.freebsd.org/doc/en_USISO8859-1.html
7)
[embe]-
http://www.embedded.com/showArticle.jhtml=15300200
8)
[cires]
-
http://cires.colorado.edu/~jjose/DMAFundamentals.pdf
9)
[meun]-
http://www.cs.mun.ca/~paul/cs3725/material/web/notes.htm
10)
[SG05a] -
Operating System Concepts – 7th Edition, 2005

By A. Silberschatz , P.B. Galvin, G. Gagne

Pg-503,504

11)
[rekno]-
http://www.real-knowledge.com/dma.htm
12)
[elecr]-
http://www.electronics.dit.ie/staff/tscarff/interrupts.htm
13)
[audit]-
http://www.auditmypc.com/acronym/IRQ.asp
14)
[SG05b] -
Operating System Concepts – 7th Edition, 2005

By A. Silberschatz , P.B. Galvin, G. Gagne

Pg-499 to 503

15)
[kbiu]-

http://kb.iu.edu/data/ailq.html
16)
[winnt]-
http://www.windowsnetworking.com//interupt.html
17)
[wiki]-

http://en.wikipedia.org/wiki/Interrupt_priority_level
18)
[real]-

http://www.realworldtech.com/ Article=RWT05249800
19)
[intel]-

http://www.intel.com/support/createshare/sb/cs-011810.htm[image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34][image: image35][image: image36][image: image37][image: image38][image: image39][image: image40][image: image41][image: image42][image: image43][image: image44][image: image45][image: image46][image: image47][image: image48][image: image49][image: image50][image: image51][image: image52][image: image53][image: image54]

PAGE

Page 2 of 17

